

CASE STUDY 1.3:

Water column pCO₂ measurements in coastal and open ocean regions using buoys

SUMMARY

Collecting timeseries measurements of pCO₂ in the deep and surface ocean is essential for determining water column carbon inventories and CO₂ fluxes. However, traditional methods of oceanographic data collection, such as research cruises and bottle sampling, can be costly, time consuming, and labor intensive. These types of data collection can also lead to spotty timeseries data because of issues with timing or a lack of consistency.

The deployment of buoys can help to reduce these potential problems through integrating pCO₂ sensors on the hull of the buoy and the anchor chain. By placing sensors at various points along the chain researchers can create more accurate timeseries at various water depths to help them understand the environmental dynamics. Additionally, while the upfront cost of equipping a buoy with sensors and deploying it may be high, the overall cost will be much lower than repeated research cruises.

INTRODUCTION

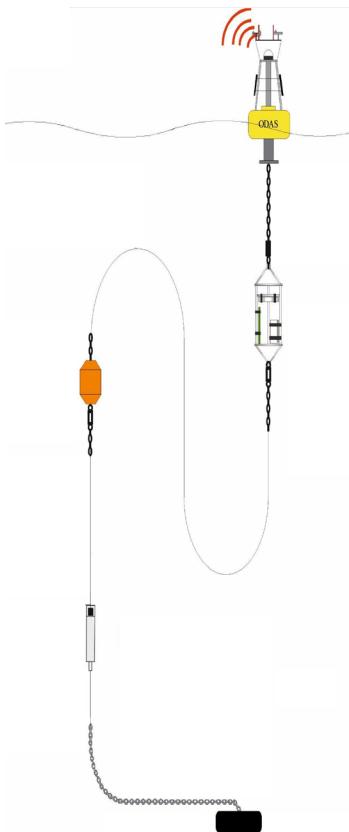

Two different buoy integrations are explored in this case study; one conducted by Dalhousie University in Bedford Basin and the other by the National Oceanography Centre (NOC) in the Porcupine Abyssal Plain Sustained Observatory (PAP-SO).

DALHOUSIE UNIVERSITY

The purpose of the Dalhousie-lead project is to address technology and knowledge gaps that impact the deployment of marine carbon dioxide removal (mCDR) technologies. This buoy is testing the system as well as several state-of-the-art sensors to measure CO₂, pH, and other environmentally important water properties. The main objectives are to investigate the feasibility of the buoy technology and to test if this platform and sensors can effectively measure CO₂ uptake from mCDR.

The NexSens buoy ([Fondriest Environmental, Inc.](#)) is equipped with a Pro-Oceanus [CO₂-Pro CV](#) sensor to measure pCO₂ drawdown and is located approximately in Halifax Harbour 700 meters downstream of where a mCDR technology is installed. To ensure that the sensor data measured is of the highest quality, the researchers also collect bottle samples to cross-verify the data points.

Figure 1: The Dalhousie buoy deployed in Halifax Harbour downstream from the mCDR site.


NATIONAL OCEANOGRAPHY CENTRE

The purpose of the NOC buoy is to serve as a fixed-point, open-ocean, scientific observatory in the Northeast Atlantic Ocean. The site has been operating since 1985 and is one of only a small number of oceanic sites that has achieved a timeseries dataset to the full ocean depth (4,850 m) over several decades. The main objective is to provide key information on the assessment of long-term changes in open ocean ecosystems.

The PAP1 buoy ([Balmoral ODAS](#)) is equipped with two Pro-Oceanus [CO₂-Pro Atmosphere](#) sensors and the Autonomous Sensor Platform (ASP) located about 30 meters below the surface is equipped with a [CO₂-Pro CV](#) and [Mini TDGP](#).

CASE STUDY 1.3:

Water column pCO₂ measurements in coastal and open ocean regions using buoys

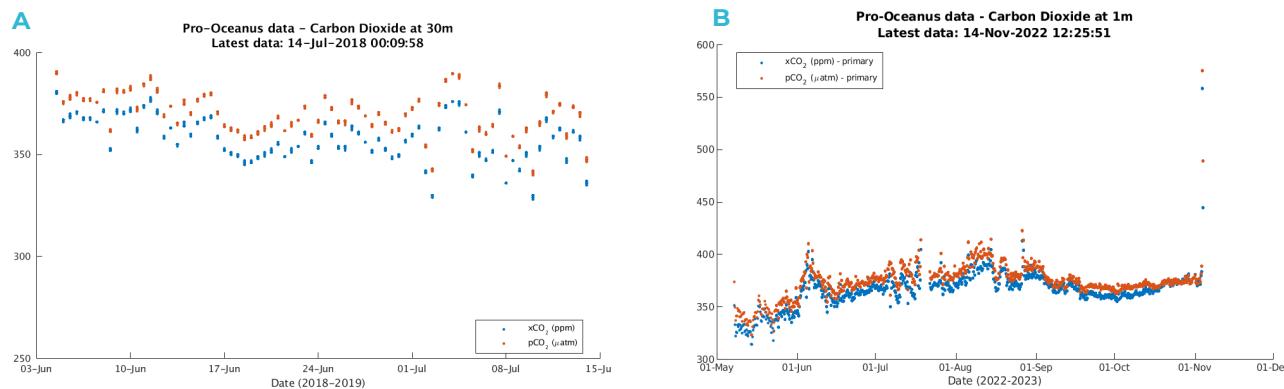
The PAP-SO site is located about midway between the European continental slope and the Mid-Atlantic Ridge. The station is considered a hybrid monitoring station with multiple moored instruments, annual cruises, use of autonomous vehicles, and sampling by partners of NOC being conducted.

Figure 2: Diagram of the NOC PAP-SO buoy in the water. Image from Hartman, 2019.

RESULTS

DALHOUSIE UNIVERSITY

CASE STUDY 1.3:


Water column pCO₂ measurements in coastal and open ocean regions using buoys

NATIONAL OCEANOGRAPHY CENTRE

As discussed above, several Pro-Oceanus sensors are integrated onto the PAP1 buoy either on the keel or the ASP. A suite of other chemical, biological, and physical oceanographic sensors are also integrated onto the buoy keel and ASP. Additionally, bottle samples are collected via a CTD for chemical and biological parameters during annual cruises to the PAP-SO site when routine recalibrations and maintenance are performed.

The CO₂-Pro Atmosphere on the buoy keel is configured to measure pCO₂ twice a day, with an Automatic Zero Point Calibration (AZPC) scheduled for every 12 hours. An additional CO₂-Pro Atmosphere has been added to the keel to serve as a backup and measures pCO₂ every 6 hours, with an AZPC scheduled every 12 hours. On the ASP, the CO₂-Pro CV has also been configured to measure every 8 hours and for an AZPC every 24 hours. Lastly, the Mini TDGP was configured to measure every thirty minutes and was equipped with a copper faceplate to help prevent biofouling of the sensor.

Unfortunately, during the 2018/19 deployment, the buoy power supply failed 40 days after deployment which also meant that the CO₂-Pro Atmosphere lost power and stopped collecting data. The CO₂-Pro CV on the ASP was able to continue collecting data during the year, which is in Figure 3a below from Hartman, 2019. During the 2022/23 deployment, the CO₂-Pro Atmosphere functioned as expected until there was a failure with the humidity cell on November 4 (Figure 3b).

Figure 3: (A) pCO₂ data from the sensor frame in 2018. Figure modified from Hartman, 2019. (B) pCO₂ data from the buoy hull in 2022. Figure modified from Gates, 2023.

REFERENCES

- Hartman, S. E. (2019). Water column and seafloor time-series studies at the Porcupine Abyssal Plain Sustained Observatory (Report No. 61) [Cruise Report]. Retrieved from https://www.bodc.ac.uk/resources/inventories/cruise_inventory/report/17223/.
- Gates, A. R. (2023). Multidecadal Research at the Porcupine Abyssal Plain – Sustained Observatory (Report No. 76) [Cruise Report]. Retrieved from https://www.bodc.ac.uk/resources/inventories/cruise_inventory/report/18301/.
- <https://projects.noc.ac.uk/pap/about>