TECHNICAL NOTE 1.1: Dissolved CO₂ and Units of Measurement

The standard units of measurement for CO₂ are normally defined by each application. For example, climate change and ocean acidification scientists use microatmospheres as a standard unit of measure, unlike the aquaculture industry, which typically uses milligrams per liter.

Figure 2. CO₂-Pro Atmosphere Sensor measures both air and surface water pCO₂ for carbon flux measurements.

Introduction

Dissolved carbon dioxide sensors often utilize equilibrator systems with semipermeable membranes in order to measure CO_2 directly in the gas phase, most commonly using an infrared detector. As a result, these instruments normally report a "gas phase" concentration of CO_2 that is in equilibrium with the surrounding liquid in which the sensor is immersed. The same equilibration dynamics occur at the surface of a body of

water in contact with the atmosphere, such that the concentration of CO_2 in the water is driven toward equilibrium with the partial pressure of CO_2 in the atmosphere:

Figure 1. Dissolved CO₂ sensor with membrane equilibrator.

Mini CO2

CO_{2 (g)} <---> CO_{2 (aq)}

It is important to understand the units of measure to ensure proper measurement and reporting of data. This technical note aims to outline the various units of measure for CO_2 in water, as well as, how to convert between these units. This will allow the user to correctly measure and report data using dissolved CO_2 sensors, including the CO_2 -Pro Series and Mini CO_2 sensors manufactured by Pro-Oceanus Systems.

Gas Phase CO₂

Gaseous Carbon Dioxide, CO_{2 (g)}, is commonly measured in units of ppmv (parts per million by volume). This is the ratio of the number of CO₂ molecules per million molecules of total gas. The ppmv of CO₂ in air does not change with pressure. The ppmv CO₂ is also referred to as the mixing ratio, xCO₂. Note that xCO₂ refers to dry gas while wCO₂ refers to the total gas including water vapor

In natural waters, $CO_{2}_{(g)}$ is often reported as a partial pressure, pCO₂, with units of microatmospheres (µatm). Unlike xCO₂, pCO₂ is dependent on the total gas pressure. The two terms are related through pressure by:

 $pCO_2 = xCO_2 X P(dry) \text{ or}$ $pCO_2 = wCO_2 X P(wet)$

where P is the total gas pressure measured in atmospheres and xCO_2 and wCO_2 are in ppmv.

A third unit of measure for CO_2 is the fugacity, fCO₂. The fugacity corrects for non-ideal gas behavior of gases and can be estimated from approximate expressions along with temperature and pCO₂. In most cases fCO₂ is within a few µatm of pCO₂.

Pro-Oceanus.com

sales@pro-oceanus.com

80 Pleasant Street, Bridgewater, Nova Scotia Canada B4V1N1 T +1-902-530-3550 F +1-902-530-3551 Toll-Free (Canada/US) 1-855-530-3550

TECHNICAL NOTE 1.1: Dissolved CO2 and Units of Measurement

CO₂ Solubility

The equilibrated ratio of partial pressure to dissolved concentration is governed by solubility:

 $pCO_2 = K_0 [CO_2 (aq)]$

where pCO_2 is the partial pressure of CO_2 in the gas phase, K_0 is a solubility coefficient, and CO_2 (aq) is the concentration of CO_2 dissolved in the water.

The solubility of CO_2 in water is a function of both the temperature and the salinity of the water, one relationship from Weiss (1974):

ln (K_o) = -60.2409+93.4517(100/T)+23.3585ln (T/100)

+ S(0.023517-0.023656(T/100)+0.0047036(T/100)²)

Where the solubility coefficient (K_0) has the units of mol kg⁻¹ atm⁻¹, temperature (T) is Kelvin, and salinity (S) is in parts per thousand (approximately equal to PSU).

Note that for non-saline waters, the second term of the equation becomes zero, leading to

In (K_o) = -60.2409+93.4517(100/T)+23.3585 In (T/100)

Figure 3 depicts the solubility of CO_2 in both freshwater and seawater (S=34) as a function of temperature. CO_2 is more soluble in freshwater than seawater, and solubility decreases with increasing temperature.

An Microsoft Excel spreadsheet for conversion calculations can be obtained by contacting Pro-Oceanus Systems at: sales@pro-oceanus.com.

Figure 3. Solubility of CO_2 in freshwater and seawater as a function of temperature.

Dissolved CO₂ - Units of Measure

For applications such as aquaculture, it is common to see units of dissolved CO_2 , including mg/L (also referred to as ppmm, parts per million by mass). The use of "ppm" for both gas phase and dissolved phase concentrations of CO_2 in water can lead to confusion and so it must be made clear what units of measure are being used. For example, 1000 ppmv of CO_2 (g) is only to 1-3 ppmm of CO_2 (aq).

Conversion of these units depends on temperature and salinity of the water. To the left is a table converting several partial pressures of CO_2 converted to aqueous phase concentration in mg/L for freshwater at 20°C.

pCO₂ (µatm) $CO_2 (mg/L)$ 0.9 500 1000 1.7 1500 2.6 2000 3.4 2500 4.3 3000 5.2 4000 6.9 5000 8.6 7500 12.9 10000 17.2

References:

Weiss, RF. 1974. Carbon dioxide in water and seawater: the solubility of a nonideal gas. Marine Chemistry. 2:203-215. 10.1016/0304-4203(74)90015-2.

Pro-Oceanus.com

sales@pro-oceanus.com

80 Pleasant Street, Bridgewater, Nova Scotia Canada B4V1N1 T +1-902-530-3550 F +1-902-530-3551 Toll-Free (Canada/US) 1-855-530-3550